If
a1,a2,a3,b1,b2,b3∈R and are such that
aibj≠1 for
1≤i,j≤3, then
∣∣
∣
∣
∣
∣
∣∣1−a31b311−a1b11−a31b321−a1b21−a31b331−a1b31−a32b311−a2b11−a32b321−a2b21−a32b331−a2b31−a33b311−a3b11−a33b321−a3b21−a33b331−a3b3∣∣
∣
∣
∣
∣
∣∣ > 0 Provided either a1<a2<a3 and b1<b2<b3, or a1>a2a3 and
b1>b2>b3
then show (a1−a2)(a2−a3)(a3−a1)(b1−b2)(b2−b3)(b3−b1)<0,