If a1,a2,a3⋯,an,⋯ are in G.P., then the determinant Δ=∣∣
∣∣loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8∣∣
∣∣ is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
Since, a1,a2,a3⋯,an,⋯ are in G.P. an=a1rn−1 ⇒logan=loga1+(n−1)logr an+1=a1rn ⇒logan+1=loga1+nlogr an+2=a1rn+1 ⇒logan+2=loga1+(n+1)logr and so on Now, Δ=∣∣
∣∣loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8∣∣
∣∣ =∣∣
∣
∣∣loga1+(n−1)logrloga1+nlogrloga1+(n+1)logrloga1+(n+2)logrloga1+(n+3)logrloga1+(n+4)logrloga1+(n+5)logrloga1+(n+6)logrloga1+(n+7)logr∣∣
∣
∣∣ Applying R2→R2−R1 and R3→R3−R1, Δ=2∣∣
∣
∣∣loga1+(n−1)logrloga1+nlogrloga1+(n+1)logr3logr3logr3logr3logr3logr3logr∣∣
∣
∣∣ =0 (since two rows are identical)