If a1,a2,a3,⋯ are in A.P. and a21−a22+a23−a24+⋯+a22k−1−a22k =M(a21−a22k). Then M =
A
k−1k+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
k2k−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
k+12k+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bk2k−1 a2−a1=a3−a2=⋯a2k−a2k−1=dHence,a21−a22=(a1−a2)(a1+a2)=−d(a1+a2)a23−a24=(a3−a4)(a3+a4)=−d(a3+a4)...............................................................a22k−1−a22k=(a2k−1a2k)(a2k−1+a2k)=−d(a2k−1+a2k)
Adding, we get a21−a22+a23−a24+⋯a22k−1−a22k=−d(a1+a2+a3+a4+⋯a2k−1+a2k)=−d.2k2(a1+a2k)=−dk(a1+a2k)
But a2k=a1+(2k−1)d⇒−d=a1−a2k2k−1 ∴ The required sum= k2k−1(a21−a22k)⇒M=k2k−1