If a1,a2,a3,…… are in a harmonic progression with a1=5 and a20=25, then, the least positive integer n for which an<0, is
25
nth term of HP, tn=1a+(n−1)n
Here, a1=5,a20=25 for HP
∴1a=5 and 1a+19d=25
⇒15+19d=125
⇒19d=125−15=−425
∴d=−419×25
Since, an<0
⇒15+(n−1)d<0
⇒15−419×25(n−1)<0⇒(n−1)>954
⇒n>1+954 or n>24.75
∴ Least positive value of n = 25