If a1,a2,.....,an and b1,b2,......,bn be real numbers and more of the bi's be zero, then prove that (a21+a22+.....+a2n)(b−21+b−22............+b−2n)≥(a1b1+.....anbn)2
Open in App
Solution
Applying Cauchy-Schwarz inequality to the numbers a1..........an, b−11,.............b−1n, we have a1(1b1)+......an(1bn)2≤(a21+...+a2n)(b−21+....+b−2n),or(a21+...............a2n)(b−21+....+b−2n)≥(a1b1+.........+anbn)2