If a1,a2,.....an is an AP with a common difference d, then tantan-1d1+a1a2+tan-1d1+a2a3+........+tan-1d1+an-1an
(n-1)da1+an
(n-1)d1+a1an
nd1+a1an
(an-a1)(an+a1)
Explanation for the correct option::
tantan-1d1+a1a2+tan-1d1+a2a3+........+tan-1d1+an-1an=tantan-1a2-a11+a1a2+tan-1a3-a21+a2a3+........+tan-1an-an-11+an-1an=tantan-1(a2)-tan-1(a1)+tan-1(a3)-tan-1(a2)+........+tan-1(an)-tan-1(an-1)=tantan-1(an)-tan-1(a1)=tantan-1an-a11+a1an[∵tan-1(A)-tan-1(B)=tan-1A-B1+AB]=an-a11+a1an=a1+(n-1)d-a1=1+a1an[∵an=a1+(n-1)d]=(n-1)d1+a1an
Hence, the correct option is (B).
If an,a2,a3,…… are in A.P., with common difference d, then the sum of the series sin d[sec a1 sec a2+sec a2 sec a3+……+sec an−1 sec an], is