If |a|<1 and |b|<1, then the sum fo the series 1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+...is
We have,
1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+....∞
=∞∑n=1(1+a+a2+....+an−1)bn−1
=∞∑n=1(1−an1−a)bn−1
=∞∑n=1bn−11−a−=∞∑n=1anbn−11−a
=11−a∞∑n=1bn−1−a1−a∞∑n=1(ab)n−1
=11−a[1+b+b2+....∞]−a1−a[1+ab+(ab)2+.....∞]
=11−a×11−b−a(1−a)(1−ab)
=a(1−ab)(1−b)