If |a|<1 and |b|<1, then the sum of the series a(a+b)+a2(a2+b2)+a3(a3+b3)+.... is?
A
a1−a+ab1−ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a21−a2+ab1−ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b1−b+a1−a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b21−b2+ab1−ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ba21−a2+ab1−ab We have, |a|<1,|b|<1 ∴|ab|=|a||b|<1 Now, a(a+b)+a2(a2+b2)+a3(a3+b3)+..... =[(a2+a4+a6+....)]+[{ab+(ab)2+(ab)3+.....}] =a21−a2+ab1−ab ..... [Sum of infinite terms in G.P.]