If |a|<1,|b|<1 then the sum of the series 1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+ ………… to infinite terms is
A
1(1−a)(1−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(1−a)(1−ab)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(1−b)(1−ab)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1(1−a)(1−b)(1−ab)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1(1−b)(1−ab) ∑∞n=1(1+a+a2+⋯+an−1)bn−1=∑∞n=1(1−an1−a)bn−1=∑∞n=1bn−11−a−∑∞n=1an.bn−11−a=11−a[∑∞n=1bn−1−a∑∞n=1(ab)n−1]=11−a.11−b−a(1−a)(1−ab)=1(1−b)(1−ab)