wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A1=3111565522 and B=122130021, find (AB)1

Open in App
Solution

We know that
(AB)1=B1A1 .....(1)

Given A1=3111565522

B=122130021

Here, |B|=1(30)+1(24)+0
|B|=32=1
Since, |B|0
Hence, B1 exists.

B1=adjB|A| and adjB=CT

C11=(1)1+13021
C11=30=3

C12=(1)1+21001
C12=(10)=1

C13=(1)1+31302
C13=20=2

C21=(1)2+12221
C21=(24)=2

C22=(1)2+21201
C22=10=1

C23=(1)2+31202
C23=(20)=2

C31=(1)3+12230
C31=0+6=6

C32=(1)3+21210
C32=(02)=2

C33=(1)3+31213
C33=3+2=5

Hence, the co-factor matrix is C=312212625

adjB=CT=326112225

B1=adjB|B|=326112225

Substituting the values in (1), we get
(AB)1=3261122253111565522

(AB)1=930+303+1212310+12315+101+6+415+4630+252+1210210+10

(AB)1=935290102

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon