Functions without Antiderivatives as Known Combination of Basic Functions
If, A1=∫nn+1m...
Question
If, A1=n+1∫n(min{|x−n|,|x−(n+1)|})dx, A2=n+2∫n+1(|x−n|−|x−(n+1)|)dxA3=n+3∫n+2(|x−(n+4)|−|x−(n+3)|)dx and g(x)=A1+A2+A3, where n∈N, then
A
A1+A2+A3=9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A1+A2+A3=94
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
100∑n=1g(x)=9004
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
100∑n=1g(x)=300
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C100∑n=1g(x)=9004 Here, min {|x−n|,|x−(n+1)|} can be shown as ∴A1=n+1∫n(min{|x−n|,|x−(n+1)|})dx=12×1×12=14 Now, A2=n+2∫n+1(|x−n|−|x−(n+1)|)dx=2∫1(|t|−|t−1|)dt Put x=n+t⇒dx=dt=2∫1(t−(t−1))dt=2∫11dt=(t)21=1 and A3=n+3∫n+2(|x−(n+4)|−|x−(n+3)|)dx=3∫2(|t−4|−|t−3|)dtPut x=n+t⇒dx=dt=3∫2((4−t)−(3−t))dt=3∫21dt=1 Also, g(x)=A1+A2+A3=14+1+1=94∴100∑n=1g(x)=g(1)+g(2)+g(3)+⋯+g(100)=94+94+⋯+94=9004