wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=102021203, then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

Open in App
Solution

Given: fx=x3-6x2+7x+2fA=A3-6A2+7A+2I3Now, A2=AAA2=102021203102021203A2=1+0+40+0+02+0+60+0+20+4+00+2+32+0+60+0+04+0+9A2=5082458013A3=A2AA3=5082458013102021203A3=5+0+160+0+010+0+242+0+100+8+04+4+158+0+260+0+016+0+39A3=210341282334055A3-6A2+7A+2I3A3-6A2+7A+2I3=210341282334055-65082458013+7102021203+2100010001A3-6A2+7A+2I3=210341282334055-3004812243048078+7014014714021+200020002A3-6A2+7A+2I3=21-30+7+20-0+0+034-48+14+012-12+0+08-24+14+223-30+7+034-48+14+00-0+0+055-78+21+2A3-6A2+7A+2I3=000000000=0Since fA=0, A is the root of fx=x3-6x2+7x+2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon