If A(-1,1) and B(2,3) are two fixed points, find the locus of a point P so that the area of ΔPAB =8sq.units.
Let P(h,k) be any point on the locus.Then,Area(PAB)=8sq units⇒12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|=8⇒12|−1(3−k)+2(k−1)+h(1−3)|=18⇒12|−3+k+2k−2−2h|=8⇒12|−2h+3k−5|=8⇒|−2h+3k−5|=16⇒−2h+3k−5=± 16⇒2h+3k−5=± 16=0⇒2h−3k+21=0 or,2h−3k−11=0Hence,the locus of (h,k) is2x−3y+21=0 or, 2x−3y−11=0