We have,
a=13
b=12
c=5
Then, we know that
cosA=b2+c2−a22bc
cosA=122+52−1322×12×5
cosA=144+25−169120
cosA=169−169120
cosA=0120
cosA=0
cosA=cosπ2
A=π2
\end{align}$
Then,
$\begin{align}
sinA=sinπ2
sinA=1
Hence, this is the answer.
ΔABC is right angled at B and 5×sin A=3. Find cos C + tan A + cosec C.