If A = 15°
Find 4 cos 2A . sin 4A .tan 3A - 1
3
2
4
0
Given A = 15 °;
Hence 4 cos 2A . sin 4A .tan 3A - 1
= 4 cos 2(15) . sin 4(15) . tan 3(15) -1
= 4 cos 30° . sin 60° . sin 45° - 1
= 4√32 . √32 . 1 - 1
= 3 - 1
= 2
If A=15∘, find the value of 4cos2A⋅sin4A⋅tan3A−1.
Find the value of r, if 20Cr+1=20C3r−1
If sin24x+cos2x=2sin4x.cos4x then number of values of x satisfying, if x∈[−2π,2π] is
Find the common factors of 2t, 3t2 and 4.