If a=(2,1,–1),b=(1,–1,0),c=(5,–1,1), then unit vector parallel to a+b–c but in opposite direction is
13(2i^-j^+2k^)
12(2i^-j^+2k^)
13(2i^-j^-2k^)
None of these
Find the unit vector parallel to a+b–c :
Given that a=(2,1,–1),b=(1,–1,0),c=(5,–1,1),
a+b-c=i^(2+1−5)+j^(1−1+1)+k^(−1+0−1)=−2i+j−2k
Unit vector of a+b-c=(a+b-c)|a+b-c|
=(-2i^+j^-2k^)4+1+4=(-2i^+j^-2k^)3
Therefore, the vector opposite to this unit vector is;
Hence the correct option is A.