The correct option is D a2−b22ab
a2(1−sinθ)+b2(1+sinθ)=2abcosθ
⇒a2(secθ−tanθ)+b2(secθ+tanθ)=2ab
⇒ab(secθ−tanθ)+ba1(secθ−tanθ)=2
Put ab(secθ−tanθ)=t
⇒t+1t=2
⇒t2+1=2t
⇒t2−2t+1=0
⇒t=1
Therefore, ab(secθ−tanθ)=1
⇒secθ−tanθ=ba ...(1)
We know that, sec2θ−tan2θ=1
⇒(secθ+tanθ)(secθ−tanθ)=1
⇒secθ+tanθ=ab ...(2)
From equation (1) and (2),
tanθ=a2−b22ab