If a2−2acosx+1=674 and tan(x2)=7 then the integral value of a is
cos(x)=1−tan2x21+tan2x2.
Hence
cos(x)=1−491+49
=−4850
=−2425.
Hence
a2−2a.(−2425)+1=674
Or
a2+48a25+1=674
Or
25a2+48a+=673×25
(a−25)(25a+673)=0
Hence integral value of a=25.