If a2+b2=14 and ab=3, find the value of 2(a+b)2−5(a−b)2.
16
0
20
32
⇒2(a+b)2−5(a−b)2.
=2(a2+b2+2ab)−5(a2−2ab+b2) =2a2+2b2+4ab−5a2+10ab−5b2 =−3a2−3b2+14ab =−3(a2+b2)+14ab =(−3×14)+(14×3) =−42+42 =0
If a + b = 10 and ab = 16, find the value of a2−ab+b2 and a2+ab+b2.
If a = 2, b = − 2, find the value of:
(i) a2 + b2 (ii) a2 + ab + b2 (iii) a2 − b2