If a2+b2+c2=−2 and f(x)=∣∣
∣
∣∣1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x∣∣
∣
∣∣, then f(x) is a polynomial of degree
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 2 f(x)=∣∣
∣
∣∣1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x∣∣
∣
∣∣ C1→C1+C2+C3 =∣∣
∣
∣∣2x+1+(a2+b2+c2)x(1+b2)x(1+c2)x2x+1+(a2+b2+c2)x1+b2x(1+c2)x2x+1+(a2+b2+c2)x(1+b2)x1+c2x∣∣
∣
∣∣ =∣∣
∣
∣∣1(1+b2)x(1+c2)x11+b2x(1+c2)x1(1+b2)x1+c2x∣∣
∣
∣∣ R1→R1−R2,R2→R2−R3 =∣∣
∣
∣∣0x−100−(x−1)x−11(1+b2)x1+c2x∣∣
∣
∣∣ =(x−1)2∣∣
∣
∣∣0100−111(1+b2)x1+c2x∣∣
∣
∣∣ f(x)=(x−1)2 Hence, f(x) is a polynomial of degree 2.