If a2,b2,c2 are in A.P., prove that cotA,cotB and cotC are also in A.P.
Open in App
Solution
b2−a2=c2−b2 sin2B−sin2A=sin2C−sin2B or sin(B+A)sin(B−A) =sin(C+B)sin(C−B) or sinC(sinBcosA−cosBsinA) =sinA(sinCcosB−cosCsinB) Divide each term by sinAsinBsinC ∴cotA−cotB=cotB−cotC ∴cotA,cotB,cotC are A.P.