If a2,b2,c2 are in A.P. prove that ab+c,bc+a,ca+b are in A.P.
a2,b2,c2 are in A.P.
∴2b2=a2+c2⇒b2−a2=c2−b2⇒(b+a)(b−a)=(c−b)(c+b)⇒b−ac+b=c−bb+a⇒b−a(c+a)(c+b)=c−b(b+a)(c+a)
[Multiplying both the sides by 1c+a]
⇒1c+a−1b+c=1a+b−1c+a
∴1b+c,1c+a,1a+b are in A.P.
Thus, ab+c+1,bc+a+1,ca+b+1 are in A.P.
Hence, ab+c,bc+a,ca+b are in A.P.