If a2, b2, c2 are in AP, prove that
ab+c,bc+a,ca+b are in AP.
ab+c,bc+a,ca+b will be in AP
if ab+c+1,bc+a+1,ca+b+1 are in AP
[on adding 1 to each term]
i.e. if a+b+cb+c,a+b+cc+a,a+b+ca+b are in AP
i.e., if 1b+c,1c+a,1a+b are in AP
[on dividing each term by (a + b + c)]
i.e., if 1c+a−1b+c=1a+b−1c+a
i.e., if (b+c)−(c+a)(c+a)(b+c)=(c+a)−(a+b)(a+b)(c+a)
i.e., if (b−a)(b+c)=(c−b)(a+b)
i.e., if (b - a) (b + a) = (c - b) (c + b)
i.e., if b2−a2=c2−b2
i.e., if a2, b2, c2 are in AP.
Hence, a2, b2, c2 are in AP⇒ a(b+c),b(c+a),c(a+b) are in AP.