If a2+b2+c2+d2=36, then
Givena2+b2+c2+d2=36
Now,
(a−b)2≥0
(b−c)2≥0
(c−d)2≥0
(d−b)2≥0
Or(a−b)2+(b−c)2+(c−d)2+(d−b)2≥0
a2+b2−2ab+b2+c2−2bc+c2+d2−2cd+d2+a2−2da≥0
2(a2+b2+c2+d2)−2(ab+bc+cd+da)≥0
(ab+bc+cd+da)≤(a2+b2+c2+d2)
(ab+bc+cd+da)≤36
In the figure, prove that:
(i) CD+DA+AB+BC>2AC
(ii) CD+DA+AB>BC