If,
(a2−b2)sinθ+2abcosθ=a2+b2Let, x=a2−b2 and y=a2+b2
Then, 4a2b2=(a2+b2)2−(a2−b2)2=y2−x2
⟹xsinθ+2abcosθ=y
⟹(xsinθ+2abcosθ)2=y2
⟹x2sin2θ+4a2b2cos2θ+4abxsinθcosθ=y2
⟹x2sin2θ+(y2−x2)cos2θ+4abxsinθcosθ=y2
⟹x2sinθ+y2cos2θ−x2cos2θ+4abxsinθcosθ=y2
⟹x2sin2θ+y2cos2θ−y2−x2cos2θ+4abxsinθcosθ=0
⟹x2sin2θ+y2(cos2θ−1)−x2cos2θ+4abxsinθcosθ=0
⟹x2sin2θ−y2sin2θ−x2cos2θ+4abxsinθcosθ=0
⟹−sin2θ(y2−x2)−x2cos2θ+4abxsinθcosθ=0
⟹4a2b2sin2θ+x2cos2θ−4abxsinθcosθ=0
⟹(2absinθ−xcosθ)2=0
⟹2absinθ=xcosθ
⟹sinθcosθ=x2ab
⟹tanθ=a2−b22ab
⟹cosecθ=√(a2−b2)2−4a2b2a2−b2
=√a4−2a2b2+b4+4a2b2a2−b2
⟹√a4+2a2b2+b4a2−b2=(a2+b2)(a2−b2)