If , a2+b=2, then maximum value of the term independent of x in the expansion of (ax1/6+bx−1/3)9 is (a>0,b>0)
84
Let (K+1)th term be independent of x.
∴tk+1=9Ck(ax1/6)9−k(bx−1/3)k=9CKa9−kbkx9−k6−k6As tk+1 is independent of x;9−k6−k3=0⇒k=3;t4=9C3a6b3=9C3(√a2b)6=84(√a2b)6≤84(a2+b2)6; (G.M≤A.M)=84 (∵a2+b=2)
∴maximum value=84