Atfirsta2=d6⇒a=(d6)12b3=d6⇒a=(d6)13c5=d6⇒a=(d6)15Now,substitutethevalueofa,b,andcintermdinthelogarithmicterm.logdabc=logd⎡⎢⎣(d6)12(d6)13(d6)15⎤⎥⎦=logd(d6)12+13+15(byusingproductruleofonents)=logd(d6)15+10+630=logd(d6)3130=logd(d)6×3130=logd(d)315Byusingpowerruleoflogarithms=315×logdd=315×1[Byusinglogarithmofbaserule]=315Hence,logdabc=315proved.