wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A(2¯i¯j3¯k), B(4¯i+¯j¯k), C(¯i3¯j+2¯k) and D(¯i¯j2¯k) then the vector equation of the plane parallel to ¯ABC and passing through the centroid of the tetrahedron ABCD is

A
¯r=(2¯i¯j¯k)+s(2¯i+2¯j+2¯k)+t(¯i+¯2j¯5k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯r=(2¯i¯j3¯k)+s(¯i+¯j+¯k)+t(¯i¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯r=(2¯i¯j¯k)+s(¯i+¯j+¯k)+t(¯i+2¯j5¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯r=(2¯i¯j¯k)+s(¯i+¯j¯k)+t(¯i+2¯j+5¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A ¯r=(2¯i¯j¯k)+s(2¯i+2¯j+2¯k)+t(¯i+¯2j¯5k)
A(a)=2ij3k,B(b)=4i+jk,C(b)=i3j+2k and D(b)=ij2k.
a+b+c+d=8^i4^j4^k

Centroid, g=a+b+c+d4=8^i4^j4^k4=2^i^j^k
AB=BA=2^i+2^j+2^k
CA=AC=^i+2^j5^k
rg=s¯AB+t¯CA (vector form of plane)
r=g=s¯AB+t¯CA
r=(2^i^j^k)+s(2^i+2^j+2^k)+t(^i+2^j5^k)Ans

1399721_1125073_ans_4916d423c5aa4941a34b34a92112465b.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Law of Conservation of Energy
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon