If A(2¯i−¯j−3¯k), B(4¯i+¯j−¯k), C(¯i−3¯j+2¯k) and D(¯i−¯j−2¯k) then the vector equation of the plane parallel to ¯ABC and passing through the centroid of the tetrahedron ABCD is
A
¯r=(2¯i−¯j−¯k)+s(2¯i+2¯j+2¯k)+t(¯i+¯2j−¯5k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯r=(2¯i−¯j−3¯k)+s(¯i+¯j+¯k)+t(¯i−¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯r=(2¯i−¯j−¯k)+s(¯i+¯j+¯k)+t(¯i+2¯j−5¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯r=(2¯i−¯j−¯k)+s(¯i+¯j−¯k)+t(¯i+2¯j+5¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯r=(2¯i−¯j−¯k)+s(2¯i+2¯j+2¯k)+t(¯i+¯2j−¯5k) A(→a)=2→i−→j−3→k,B(→b)=4→i+→j−→k,C(→b)=→i−3→j+2→k and D(→b)=→i−→j−2→k.