If a2+1a2=10, then the value of a4+1a4 is
Given, a2+1a2=10.
On squaring both sides, we get,
⇒(a2+1a2)2=(10)2.
We know, (a+b)2=a2+2ab+b2.
Then,⇒(a2)2+(1a2)2+2(a2)(1a2)=100
⇒a4+1a4+2=100
⇒a4+1a4=100−2
⇒a4+1a4=98.
Therefore, option B is correct.