If a=2^i+2^j+3^k, b=−^i+2^j+^k and c=3^i+^j such that a+λb is perpendicular to c, then find the value of λ.
The given vectors are a=2^i+2^j+3^k, b=−^i+2^j+^k and c=3^i+^j
Now, (a+λb)⊥c (Given)
⇒(a+λb).c=0
(∵ scalar product of two perpendicular vectors is zero)
⇒[(2^i+2^j+3^k)+λ(−^i+2^j+^k)].(3^i+^j)=0⇒[(2−λ)^i+(2+2λ)^j+(3+λ)^k].(3^i+^j)=0⇒(2−λ)3+(2+2λ)1+(3+λ)0=0⇒6−3λ+2+2λ=0⇒8−λ=0⇒λ=8
Hence, the required value of λ is 8.