If A=2 tan−1(2√2−1) and B=3 sin−1(13)+sin−1(35), then
A > B
We have A=2 tan−1 (2√2−1)=2 tan−1(1.828)⇒A>2 tan−1√3⇒A>2π3
Next sin−1(13)<sin−1(12)⇒sin−1(13)<π6
⇒ sin−113<π2
Also 3 sin−1(13)=sin−1[3.13−4(13)3]
=sin−1(2327)=sin−1(0.852)⇒ 3 sin−1(13)<sin−1(√32)⇒3 sin−1(13)<π3
Further sin−1(35)=sin−1(0.6)<sin−1(√32)
⇒ sin−1(35)<π3
Hence, B=3 sin−1(13)+sin−1(35)<π3+π3=2π3. Hence A > B