wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=2312 and I=1001, then
(i) find λ, μ so that A2 = λA + μI
(ii) prove that A3 − 4A2 + A = O

Open in App
Solution

i Given: A=2312Now,A2=AAA2=23122312A2=4+36+62+23+4A2=71247A2=λA+μI71247=λ2312+μ100171247=2λ3λλ2λ+μ00μ71247=2λ+μ3λ+0λ+02λ+μ71247=2λ+μ3λλ2λ+μThe corresponding elements of two equal matrices are equal. 7=2λ+μ ...1 12=3λλ=123=4Putting the value of λ in eq. 1, we get 7=24+μ7-8=μ μ=-1

ii We have, A=2312A2=AAA2=23122312A2=4+36+62+23+4A2=71247Now, A3=A2AA3=712472312A3=14+1221+248+712+14A3=26451526Now, A3-4A2+AA3-4A2+A=26451526-471247+2312A3-4A2+A=26451526-28481628+2312A3-4A2+A=26-28+245-48+315-16+126-28+2A3-4A2+A=0000=0Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon