The correct option is B cos−1(−21√12865)
If →A and →B are the adjacent sides of a parallelogram then the diagonals of a parallelogram will be (→A+→B) and (→A−→B)
So we have to find angle between (→A+→B) and (→A−→B)
→A+→B=(2ˆi+3ˆj−6ˆk)+(3ˆi−6ˆj−5ˆk) =5ˆi−3ˆj−11ˆk→A−→B=(2ˆi+3ˆj−6ˆk)−(3ˆi−6ˆj−5ˆk) =−ˆi+9ˆj−ˆk(→A+→B).(→A−→B)=(→A+→B∣∣∣(→A−→B∣∣∣cosθ⇒cosθ=(→A+→B).(→A−→B)(→A+→B∣∣∣(→A−→B∣∣∣(→A+→B).(→A−→B)=(5ˆi−3ˆj−11ˆk).(−ˆi+9ˆj−ˆk)⇒(→A+→B).(→A−→B)=−5−27+11=−21(→A+→B∣∣∣=√52+(−3)2+(−11)2=√155(→A−→B∣∣∣=√(−1)2+92+(−1)2=√83∴cos θ=−21√12865θ=cos−1(−21√12865)