If a=2i^+3j^-k^,b=i^+2j^-5k^,c=3i^+5j^-k^, then a vector perpendicular to a and in the plane containing band c is?
-17i^+21j^–97k^
17i^+21j^–123k^
-17i^-21j^+97k^
-17i^-21j^-97k^
Find the vector perpendicular to a and in the plane containing band c :
Given that the vectors a=2i^+3j^-k^,b=i^+2j^-5k^,c=3i^+5j^-k^,
Let the required vector be r→
As per the given condition
(b→×c→)=i^j^k^12-535-1⇒(b→×c→)=i^(-2+25)-j^(-1+15)+k^(5-6)⇒(b→×c→)=23i^-14j^-k^
a→×(b→×c→)=i^j^k^23-123-14-1⇒a→×(b→×c→)=i^(-3-14)-j^(-2+23)+k^(-28-69)⇒a→×(b→×c→)=-17i^-21j^-97k^
Hence, the correct option is (D).