If A=(-3,4),B=(-1,-2),C=(5,6),D(x,-4)are vertices of a quadrilateral such thatar(∆ABD)=2ar(∆ACD) then x is equal to
6
9
69
96
The explanation for the correct option:
Step 1. Writing the given data:
Given,
A=(-3,4),B=(-1,-2),C=(5,6),D(x,-4)
and, ∆ABD=2∆ACD
Step 2. Find the value of x:
Area (∆ABD)=12|(-3)(-2+4)+(-1)(-4-4)+x(4-(-2)| [∵Area(∆)=(12)|x1(y2-y3)+x2(y3-y1)+x3(y1-y2)|]
=12|2+6x|=|1+3x|
Similarly,
Area (∆ACD)=12|(-3)(6+4)+5(-4-4)+x(4-6)|
=12|70+2x|
∴∆ABD=2∆ACD
⇒1+3x=212(70+2x)
⇒1+3x=70+2x
∴x=69
Hence, the correct option is (C)
If z1,z2,z3,z4 are the four complex numbers represented by the vertices of a quadrilateral taken in order such that z1−z2=z3−z4 and amp z4−z1z2−z1=π2, then the quadrilateral is a