If A=(−3,4),B=(−1,−2),C=(5,6),D=(x,−4) are vertices of a quadrilateral such that ΔABD=2ΔACD. Then x, is equal to:
A
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
69
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
96
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B69 Using ar(Δ)=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)| ar(ΔABD)=12|(−3)(−2+4)+(−1)(−4−4)+x(4−(−2))| =12|2+6x| =|1+3x|⟶(i) ar(ΔACD)=12|(−3)(6+4)+5(−4−4)+x(4−6)| =12|−70−2x| =12|70+2x| =35+x⟶(ii) ∵|−1|=1 So, ar(ΔABD)=2Δ(ACD) 1+3x=70+2x 69=x ∴x=69