If a>3 and A,B,C are variable angles of △ABC, such that √2a2−9cotA+2acotB+√2a2+9cotC=12a, then the minimum value of cot2A+cot2B+cot2C=
Open in App
Solution
Let two vectors, →P=√2a2−9^i+2a^j+√2a2+9^k and →Q=cotA^i+cotB^j+cotC^k
If θ is the angle between →P and →Q
then cosθ=→P⋅→Q|→P||→Q|=√2a2−9cotA+2acotB+√2a2+9cotC√8a√cot2A+cot2B+cot2C ⇒cosθ=12a√8a√cot2A+cot2B+cot2C⇒144a28a2(cot2A+cot2B+cot2C)≤1[∵cos2θ≤1]⇒cot2A+cot2B+cot2C≥18 ∴(cot2A+cot2B+cot2C)min=18