If a3+b3=27 and a2+b2−ab=9, then a+b=___
We know that a3+b3=(a+b)(a2+b2−ab)
⇒a+b=a3+b3a2+b2−ab
=279=3
⇒a+b=3
If a + b + c = 9, and a2+b2+c2=35, find the value of a3+b3+c3−3abc.
If x = 1 + a + a2 .......... to ∞ (|a|<1), y = 1 + b + b2 ......... to ∞ (|b| < 1), then Z = 1 + ab + a2 b2 + a3 b3..... to ∞ is