We have
a3+b3+c3=3abc ..... (1) and a+b+c=0 ..... (2)
Have to prove that,
(b+c)23bc+(c+a)23ac+(a+b)23ab=1
Now from equation 2 we can write
a+b+c=0
or, (a+b)=−c ........ (3)
similarly, (b+c)=−a ......... (4)
and (c+a)=−b ......... (5)
Consider the left hand side,
(b+c)23bc+(c+a)23ac+(a+b)23ab
=(−a)23bc+(−b)23ac+(−c)23ab [placing the values from the equations 3,4 and 5]
=(−a)23bc(aa)+(−b)23ac(bb)+(−c)23ab(cc) [Multiply and divide the fractions with a b c respectively]
=(a)33abc+(b)33abc+(c)33abc
=(a³+b³+c³)3abc
=(3abc)3abc [from the equation 1]
=1
∴(b+c)23bc+(c+a)23ac+(a+b)23ab=1