The correct option is B (2,1,2)
a3∣∣
∣
∣∣1bcb2b3+1b2cc2bc2c3+1∣∣
∣
∣∣+a2∣∣
∣
∣∣1a200bb3+1bc2cb2cc3+1∣∣
∣
∣∣=18
Multiplying a2 in R1 and a in C1 to first determinant and R↔C in second determinant then multiply a2 in R1
∣∣
∣
∣∣a3a2ba2cab2b3+1b2cac2bc2c3+1∣∣
∣
∣∣+∣∣
∣
∣∣1a2ba2c0b3+1b2c0bc2c3+1∣∣
∣
∣∣=18⇒∣∣
∣
∣∣a3+1a2ba2cab2b3+1b2cac2bc2c3+1∣∣
∣
∣∣=18R1→aR1, R2→bR2, R3→cR3⇒∣∣
∣
∣∣a4+aa3ba3cab3b4+bb3cac3bc3c4+c∣∣
∣
∣∣=18abc⇒abc∣∣
∣
∣∣a3+1a3a3b3b3+1b3c3c3c3+1∣∣
∣
∣∣=18abcR1→R1+R2+R3(1+a3+b3+c3)∣∣
∣
∣∣111b3b3+1b3c3c3c3+1∣∣
∣
∣∣=18C2→C2−C1, C3→C3−C1(1+a3+b3+c3)∣∣
∣
∣∣100b310c301∣∣
∣
∣∣=18⇒1+a3+b3+c3=18⇒a3+b3+c3=17∴(a,b,c)=(1,2,2),(2,1,2),(2,2,1)