If A = 30∘, verify that:
(i) sin 2A=2 tan A1+tan2 A (ii) cos 2A=1−tan2 A1+tan2 A (iii) tan 2A=2 tan A1−tan2 A
(i) Given A = 30,
sin2A=sin(30×2)=sin60=√322tanA=2×tan30=2√31+tan2A=1+(1√3)2=1+13=432tanA1+tan2A=2√343=2√3×34=√32=sin2Asin2A=2tanA1+tan2A
hence proved.
(ii) Given A = 30,
cos2A=cos(30×2)=cos60=121+tan2A=1+(1√3)2=1+13=431−tan2A=1−(1√3)2=1−13=231−tan2A1+tan2A=2343=23×34=12=cos2Acos2A=1−tan2A1+tan2A
(iii) Given A = 30,
tan2A=tan(30×2)=tan60=√32tanA=2×tan30=2√31−tan2A=1−(1√3)2=1−13=232tanA1−tan2A=2√323=2√3×32=√3=tan2Atan2A=2tanA1−tan2A
hence proved.