2sinA2=−√1+sinA+√1−sinA;A=340∘LHS: 2sinA2=2sin170∘=2sin(180∘−10∘)=2sin10∘
RHS: −√1+sinA+√1−sinA
=−√cos2A2+sin2A2+2.sinA2.cosA2+√cos2A2+sin2A2−2.sinA2.cosA2=−∣∣∣cosA2+sinA2∣∣∣+∣∣∣cosA2−sinA2∣∣∣=−|cos110∘+sin10∘|+|cos170∘−sin170∘|=−|cos10∘+sin10∘|+|−cos10∘−sin10∘|=−cos10∘+sin10∘+cos10∘+sin10∘(sin10∘<cos10∘)=2sin10∘;∴LHS=RHS(sin10∘,cos10∘>0)
Hence proved.