A=4(cos2π15+cos4π15−cos7π15−cosπ15)
=4[(cos24∘+cos48∘)−(cos84∘+cos12∘)] =4[2cos36∘cos12∘−2cos48∘cos36∘]
=8cos36∘[cos12∘−cos48∘] =8cos36∘[2sin30∘sin18∘]
=16×√5+14×12×√5−14 =2
B=8cot(α+β+γ)
tanα,tanβ,tanγ are the real roots of the equation x3−8(a−b)x2+(2a−3b)x−4(b+1)=0
∴∑tanα=8(a−b)
∑tanαtanβ=(2a−3b)
and ∏tanα=4(b+1)
Now, tan(α+β+γ)=∑tanα−∏tanα1−∑tanαtanβ
=8(a−b)−4(b+1)1−(2a−3b)=4(2a−2b−b−1)(1−2a+3b)
=4(2a−3b−1)(1−2a+3b)=−4
⇒cot(α+β+γ)=−14
∴B=8cot(α+β+γ)=−2
Hence, A−B=4