wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=4(cos2π15+cos4π15cos7π15cosπ15) and B=8cot(α+β+γ), where tanα,tanβ,tanγ are the real roots of the equation x38(ab)x2+(2a3b)x4(b+1)=0, then the value of AB is

Open in App
Solution

A=4(cos2π15+cos4π15cos7π15cosπ15)
=4[(cos24+cos48)(cos84+cos12)] =4[2cos36cos122cos48cos36]
=8cos36[cos12cos48] =8cos36[2sin30sin18]
=16×5+14×12×514 =2

B=8cot(α+β+γ)
tanα,tanβ,tanγ are the real roots of the equation x38(ab)x2+(2a3b)x4(b+1)=0
tanα=8(ab)
tanαtanβ=(2a3b)
and tanα=4(b+1)
Now, tan(α+β+γ)=tanαtanα1tanαtanβ
=8(ab)4(b+1)1(2a3b)=4(2a2bb1)(12a+3b)
=4(2a3b1)(12a+3b)=4
cot(α+β+γ)=14
B=8cot(α+β+γ)=2

Hence, AB=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon