The correct option is A 314
Using the formula,
an=a+(n−1)d
So, a5=a+(5−1)d
12=a+4d ............. (1)
a15=a+(15−1)d
400=a+14d .......... (2)
Solving equation (1) & (2)
12=a+4d
400=a+14d
(-) (-) (-)
---------------------
−388=−10d
d=38.8
Put the value of d in equation (1)
12=a+4(38.8)
12=a+155.2
a=−143.2
The sum of first n term is given by Sn=n2(2a+(n−1)d)
S10=102(2(−143.2)+(10−1)38.8)
=5(−286.4+349.2)
=5(62.8)
S10=314