Let the vertices of the quadrilateral be A(−5,7),B(−4,−5),C(−1,−6),D(4,5).
Joining AC there are two triangles ABC,ADC
Therefore area of quadrilateral ABCD=Area of ΔABC+Area of ΔADC
Area of ΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
Here x1=−5,y1=7,x2=−4,y2=−5,x3=−1,y3=−6
Area of ΔABC=12[−5(−5+6)−4(−6−7)−1(7+5)]=12(35) square units.
Area of ΔADC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
Here x1=−5,y1=7,x2=4,y2=5,x3=−1,y3=−6
Area of ΔADC=12[−5(5+6)+4(−6−7)−1(7−5)]=12(−109)=12(109) square units. (since area cannot be negative)
Therefore area of quadrilateral ABCD=Area of ΔABC+Area of ΔADC
=12(35)+12109
=12(144)
=72
Therefore area of quadrilateral ABCD=72 square units