The correct options are
A Incentre of △ABC is (−4,2+√2)
B Orthocentre centre of △ABC is (−4,4)
C Excentre opposite to vertex A is (√2−4,4)
D Excentre opposite to vertex C is (−4,2−√2)
Given vertices of the triangle are A(−5,3),B(−3,3) and C(−4,4)
Now, finding the sidelengths, we get
a=BC=√(1)2+(−1)2=√2 unitsb=AC=√(−1)2+(−1)2=√2 unitsc=AB=√(−2)2+(0)2=2 units
So, BC=AC
By observation we get
c2+a2+b2
AB2=BC2+AC2
So △ABC is a isosceles right angle triangle at C,
Now,
Orthocentre is same as coordinate of vertex C
=(−4,4)
I=(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)
=(−5√2−3√2−82√2+2,3√2+3√2+82√2+2)
=(−4,2+√2)
Excentre opposite to vertex A =(−ax1+bx2+cx3−a+b+c,−ay1+by2+cy3−a+b+c)
=(5√2−3√2−82,−3√2+3√2+82)
=(√2−4,4)
Excentre opposite to vertex C =(ax1+bx2−cx3a+b−c,ay1+by2−cy3a+b−c)
=(−5√2−3√2+82√2−2,3√2+3√2−82√2−2)
=(−4,2−√2)