Given vertices: A(7,9),B(3,−7) and C(−3,3)
AB=√16+256=√272BC=√36+100=√136AC=√100+36=√136
∴AC=BC and AB2=BC2+AC2
Hence, △ABC is right angled isosceles triangle with ∠C=90∘
∴S(α,β)= Mid point of AB i.e., (5,1)
O(l,m)= Vertex C=(−3,3)
P(m,α)=(3,5)Q(β,l)=(1,−3)∴PQ2=4+64=68