If a,a+b,a+2b are zeroes of the cubic polynomial x3−6x2+3x+10 , then a+b=________.
Let f(x) = x3−6x2+3x+10
Given, the zeroes of f(x) = a,a+b,a+2b
∴ Sum of zeroes =a+a+b+a+2b
⇒−ba=a+a+b+a+2b (∵ sum of zeroes =−coefficientofx2coefficientofx3 )
∴−(−6)1=3a+3b
⇒6=3(a+b)
⇒63=a+b