A≡(1+2i)x3−2(3+i)x2+(5−4i)x+2a2=0
Let the real root of equation be α. Then,
(1+2i)α3−2(3+i)α2+(5−4i)α+2a2=0
Equating imaginary part zero, we get
2α3−2α2−4α=0
⇒α(α2−α−2)=0
⇒α=0 or α=−1,2
Now, equating real part to zero, we have
α3−6α2+5α+2a2=0
α=0⇒a=0
α=−1⇒a=±√6
α=2⇒a=±√3
∴∑a2=02+(√6)2+(−√6)2+(√3)2+(−√3)2
=18
⇒∑a22=9