wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a =a1i^+a2j^+a3k^, b =b1i^+b2j^+b3k^ and c =c1i^+c2j^+c3k^, then verify that a × b +c =a ×b +a ×c .

Open in App
Solution

Given:a=a1i^+a2j^+a3k^b=b1i^+b2j^+b3k^ c=c1i^+c2j^+c3k^b+c=b1+c1 i^+b2+c2 j^+b3+c3 k^ a×b+c=i^j^k^a1a2a3b1+c1b2+c2b3+c3 =a2b3+a2c3-a3b2-a3c2i^-a1b3+a1c3-a3b1-a3c1j^+ a1b2+a1c2-a2b1-a2c1k^ ...(1)Now, a×b=i^j^k^a1a2a3b1b2b3 = a2b3-a3b2i^- a1b3-a3b1j^+ a1b2-a2b1k^a×c=i^j^k^a1a2a3c1c2c3 =a2c3-a3c2i^ -a1c3-a3c1j^ +a1c2-a2c1k^ a×b+b×c= a2b3+a2c3-a3b2-a3c2i^-a1b3+a1c3-a3b1-a3c1 j^ + a1b2+a1c2-a2b1-a2c1k^ ...(2)From (1) and (2), we geta×b+c=a×b+b×c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation in Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon